论文/论著/Papers

同行评议

  1. Ji H, Fu X, Nan Z*, Zhao S*. An Effective Medium Theory-Based Unified Model for Estimating Thermal Conductivity in Unfrozen and Frozen Soils. Catena. 2024, 239: 107942. doi:10.1016/j.catena.2024.107942. (Accepted Manuscript in pdf, ~2.2MiB; Post)
  2. Wang Y, Zhang S, Zhao S, Jia H, Bai R. Plastic strain characteristics on frozen silty clay subjected to intermittent vehicle loads. Transportation Geotechnics. 2023, 43: 101147. https://doi.org/10.1016/j.trgeo.2023.101147.
  3. Cao Z, Nan Z*, Hu J, Chen Y, Zhang Y. A new 2010 permafrost distribution map over the Qinghai-Tibet Plateau based on subregion survey maps: a benchmark for regional permafrost modeling. Earth System Science Data. 2023, 15(9): 3905-3930. https://doi.org/10.5194/essd-15-3905-2023.(Post, Open Access, pdf ~15MiB)
  4. Zhang G, Mu C, Nan Z, Wu X, Cheng G. Elevation dependency of future degradation of permafrost over the Qinghai-Tibet Plateau. Environmental Research Letters. 2023, 18: 75005. doi:10.1088/1748-9326/ace0d1. (Open Access, pdf ~2.5MiB)
  5. Zhao Y, Nan Z*, Cao Z, Ji H, Hu J. Evaluation of parameterization schemes for matric potential in frozen soil in land surface models: A modeling perspective. Water Resources Research. 2023, 59(6): e2023WR034644. doi:10.1029/2023WR034644. (Shared link, Post, )
  6. Sun Y, Nan Z*, Yang W, Li L. Projecting China’s future water footprints and water scarcity under socioeconomic and climate change pathways using an integrated simulation approach. Climate Services. 2023, 30(100385). https://doi.org/10.1016/j.cliser.2023.100385. (Post, pdf ~4MiB)
  7. Chen Y, Nan Z*, Cao Z, Ou M, Feng K. A stepwise framework for interpolating land surface temperature under cloudy conditions based on solar-cloud-satellite geometry. ISPRS Journal of Photogrammetry and Remote Sensing. 2023, 197: 292-308. doi:10.1016/j.isprsjprs.2023.02.004. (Post, Codes, Accepted ver. ~5MiB)
  8. 杜玉霞,明锋*,赵淑萍,张淑娟,杨旭. 温度对土壤介电常数的影响规律研究. 冰川冻土. 2022, 44(2): 634-642.
  9. Wang Y, Chen H*, Nan Z, Shang Z. Modelling Permafrost Characteristics and Its Relationship with Environmental Constraints in the Gaize Area, Qinghai-Tibet Plateau, China. Remote Sensing. 2022, 14(5610). https://doi.org/10.3390/rs14215610. (Open Access)
  10. Zhang G, Nan Z*, Hu N, Yin Z, Zhao L, Cheng G, Mu C. Qinghai-Tibet Plateau permafrost at risk in the late 21st century. Earth’s Future. 2022, 10 (6): e2022EF002652, doi:10.1029/2022EF002652. (Post, pdf, 代码)
  11. Zhao Y, Nan Z*, Ji H, Zhao L. Convective heat transfer of spring meltwater accelerates active layer phase change in Tibet permafrost areas. The Cryosphere. 2022, 16: 825-849. doi:10.5194/tc-16-825-2022. (Post, Journal, pdf, ~6MiB)
  12. Ji Hailong, Nan Z*, Hu Jianan, Zhao Yi, & Zhang Yaonan (2022). On the Spin-up Strategy for Spatial Modeling of Permafrost Dynamics: a Case Study on the Qinghai-Tibet Plateau. Journal of Advances in Modeling Earth Systems, 14, e2021MS002750, https://doi.org/10.1029/2021MS002750. (Link, Open Access, Local, pdf~8MB)
  13. Hu J, Nan Z* and Ji H (2022). Spatiotemporal Characteristics of NPP Changes in Frozen Ground Areas of the Three-River Headwaters Region, China: A Regional Modeling Perspective. Front. Earth Sci. 10:838558. doi: 10.3389/feart.2022.838558. (Link to post; Local (pdf, ~4MiB))
  14. Zhang, G., Nan, Z.*, Yin, Z., & Zhao, L. (2021). Isolating the contributions of seasonal climate warming to permafrost thermal responses over the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 126, e2021JD035218. https://doi.org/10.1029/2021JD035218. (Link, Accepted Version)
  15. Yin Z, Nan Z*, Cao Z, Zhang G. Evaluating the applicability of a quantile-quantile adjustment approach for downscaling monthly GCM projections to site scales over the Qinghai-Tibet Plateau. Atmosphere. 2021, 12(9): 1170. (Link1, Open Access Link)
  16. Zhang G, Nan Z*, Zhao L, Liang Y, Cheng G. Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming. Earth and Planetary Science Letters. 2021, 562: 116858. doi:10.1016/j.epsl.2021.116858. (Link)
  17. Cao Z, Gao H, Nan Z*, Yin Z, Zhao Y. A semi-physical approach for downscaling soil moisture data in a typical cold alpine area, Northwest China. Remote Sensing. 2021, 13(3): 509. https://doi.org/10.3390/rs13030509. (Link)
  18. Chen Y, Nan Z*, Zhao S, Xu Y. A Bayesian approach for interpolating clear-sky MODIS land surface temperatures on areas with extensive missing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021, 14: 515-528. https://doi.org/10.1109/JSTARS.2020.3038188 (Link1Link2, pdf ~1.6MB)
  19. Hu J † , Zhao S † , Nan Z*, Wu X, Sun X, Cheng G. An effective approach for mapping permafrost in a large area using subregion maps and satellite data. Permafrost and Periglacial Processes. 2020;548-560. https://doi.org/10.1002/ppp.2068 (Link)
  20. Zhang L, Ren D, Nan Z, Wang W, Zhao Y, Zhao Y, Ma Q, Wu X. Interpolated or satellite-based precipitation? Implications for hydrological modeling in a meso-scale mountainous watershed on the Qinghai-Tibet Plateau. Journal of Hydrology. 2020, 583: 124629. (Link, pdf ~7 MB)
  21. Zhang L, Li X, Cao Y, Nan Z, Wang W, Ge Y, Wang P, Yu W. Evaluation and integration of the top-down and bottom-up satellite precipitation products over mainland China. Journal of Hydrology. 2020, 581: 124456. https://doi.org/10.1016/j.jhydrol.2019.124456. (Link, pdf ~8MB)
  22. Zhang G, Nan Z*, Wu X, Ji H, Zhao S. The role of winter warming in permafrost change over the Qinghai-Tibet Plateau. Geophysical Research Letters. 2019, 46(20): 11261-11269. (Link1, Link2)
  23. Che Y, Zhang M, Li Z, Wei Y, Nan Z, Li H, Wang S, Su B. Energy balance model of mass balance and its sensitivity to meteorological variability on Urumqi River Glacier No.1 in the Chinese Tien Shan. Scientific Reports. 2019, 9(1): 13958. DOI:10.1038/s41598-019-50398-4. (Link)
  24. Zhao Y, Nan Z*, Yu W, Zhang L. Calibrating a hydrological model by stratifying frozen ground types and seasons in a cold alpine basin. Water. 2019, 11(5): 985. DOI:10.3390/w11050985. (Link1, Link2)
  25. 赵奕,南卓铜*,李祥飞,徐毅,张凌. 分布式水文模型DHSVM在西北高寒山区流域的适用性研究. 冰川冻土. 2019, 41(1): 147-157. (Link1, Link2)
  26. Zhang L, Nan Z, Wang W, Ren D, Zhao Y, Wu X. Separating climate change and human contributions to variations in streamflow and its components using eight time-trend methods. Hydrological Processes. 2019, 33, 383-394. DOI:10.1002/hyp.13331. (Link)
  27. 张博,吴立宗,王维真,孙雪卉. 基于Spark的分布式青藏高原MODIS LST插值方法实现研究. 遥感技术与应用. 2018, 33(6): 1178-1185.
  28. 张国飞*,李祥飞,李忠勤. 1980-2011年全球不同地区冰川物质平衡变化分析. 冰川冻土. 2018, 40(2): 214-222.(Link)
  29. 吴小波,南卓铜*,王维真,赵林. 基于Noah陆面过程模型模拟青藏高原植被和土壤特征对多年冻土影响的模拟. 冰川冻土. 2018, 40(2): 279-287. (Link)
  30. Cao Y, Nan Z*, Cheng G, Zhang L. Hydrological variability in the arid lands of northwest China during 2002-2013. Advances in Meteorology. 2018, 2018(1502472): 1-13. DOI:10.1155/2018/1502472. (Link)
  31. Wu X, Nan Z*, Zhao S, Zhao L, Cheng G. Spatial modelling of permafrost distribution and properties on the Qinghai-Tibet Plateau. Permafrost and Periglacial Processes. 2018, 29(2): 86-99. DOI:10.1002/ppp.1971(Link)
  32. Zhang L, Nan Z*, Liang X*, Xu Y, Hernandez F, Li L. Application of the MacCormack Scheme to Overland Flow Routing for High-spatial Resolution Distributed Hydrological Model. Journal of Hydrology. 2018, 558: 421-431. (Accepted version)
  33. Zhang L, Nan Z*, Yu W, Zhao Y, Xu Y. Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Science of the Total Environment. 2018, 622-623: 1016-1028. 
  34. Cai C, Ma W, Zhou Z, Mu Y, Zhao S*, Chen D, Liao M. Laboratory investigation on strengthening behavior of frozen China standard sand. Acta Geotechnica. 2019, 14(1): 179-192. DOI:10.1007/s11440-018-0648-3. (Link)
  35. 黄滢冰,南卓铜*,徐启恒,赵克飞. 珠三角典型地区耕地流失特征及机制分析——以1988年~2013年快速城市化的东莞市为例. 世界地理研究. 2017, 26(05): 44-55.
  36. 陈浩,宁忱,南卓铜*,王玉丹,吴小波,赵林. 基于机器学习模型的青藏高原日降水数据的订正研究. 冰川冻土. 2017, 39(3): 583-592.
  37. 强德霞,赵彦博,南卓铜*,吴小波. 基于参数实时优化的洪水预报系统研究:以黑河干流洪水为例. 水利水电技术. 2017, 48(4): 13-17.
  38. Zhao S, Nan Z*, Huang Y, Zhao L. The application and evaluation of simple permafrost distribution models on the Qinghai-Tibet Plateau. Permafrost and Periglacial Processes. 2017, 28(2): 391-404. DOI:10.1002/ppp.1939.(Link)
  39. Wang Z, Wang Q, Wu X, Zhao L, Yue G, Nan Z, Wang P, Yi S, Zou D, Qin Y, Wu T, Shi J. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas. PLOS ONE. 2017, 12(1): e169732. DOI:10.1371/journal.pone.0169732.
  40. 李红星,吴立宗,南卓铜*,王亮绪,王建,赵彦博,张耀南,马瀚青. 科学数据联合出版模式与内容研究. 遥感技术与应用. 2016, 31(04): 801-808. (Link)
  41. 赵彦博,曹学诚,南卓铜*,吴小波. 基于开源GIS的DHSVM模型河网数据自动制备方法应用研究. 遥感技术与应用. 2016, 31(04): 793-800.
  42. 王玉丹,南卓铜*,陈浩,吴小波. 基于K最近邻模型的青藏高原CMORPH日降水数据的订正研究. 遥感技术与应用. 2016, 31(3): 607-616.
  43. 马启民,黄滢冰,南卓铜*,吴小波. 青藏高原典型多年冻土区的一维水热过程模拟研究. 冰川冻土. 2016, 38(2): 341-350.
  44. Zhang L, Nan Z*, Xu Y, Li S. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China. PloS One. 2016, 11(6): e158394. DOI:10.1371/journal.pone.0158394. (Link1, Link2)
  45. Kargel J S, Leonard G J, Shugar D H, Haritashya U K, Bevington A, Fielding E J, Fujita K, Geertsema M, Miles E S, Steiner J, Anderson E, Bajracharya S, Bawden G W, Breashears D F, Byers A, Collins B, Czyzowska-Wisniewski E, Dhital M R, Donnellan A, Evans T L, Geai M L, Glasscoe M T, Green D, Gurung D R, Heijenk R, Hilborn A, Hudnut K, Huyck C, Immerzeel W W, Jiang L, Jibson R, Kääb A, Khanal N R, Kirschbaum D, Kraaijenbrink P D A, Lamsal D, Liu S, Lv M, Mckinney D, Nahirnick N K, Nan Z, Ojha S, Olsenholler J, Painter T H, Pleasants M, Pratima K, Qi Y, Raup B H, Regmi D, Rounce D R, Sakai A, Shangguan D, Shea J M, Shrestha A B, Shukla A, Stumm D, van der Kooij M, Voss K, Wang X, Weihs B, Wolfe D, Wu L, Yao X, Yoder M R, Young N. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science. 2016, 3511(6269). DOI:10.1126/science.aac8353. 
  46. Zhang L, Nan Z*, Yu W, Ge Y. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions. Environmental Management. 2016, 57(2): 412-431. DOI:10.1007/s00267-015-0620-z.
  47. Wang Z, Wu X, Yue G, Zhao L, Wang Q, Nan Z, Qin Y, Wu T, Shi J, Zou D. Spatial and Temporal Variations in Spectrum-Derived Vegetation Growth Trend in Qinghai-Tibetan Plateau from 1982 to 2014. SPECTROSCOPY AND SPECTRAL ANALYSIS. 2016, 36(2): 471-477. DOI:10.3964/j.issn.1000-0593(2016)02-0471-07.
  48. Wang Z, Wang Q, Zhao L, Wu X, Yue G, Zou D, Nan Z, Liu G, Pang Q, Fang H. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau. JOURNAL OF MOUNTAIN SCIENCE. 2016, 13(6): 1035-1046.
  49. Yu W, Nan Z*, Wang Z, Chen H, Wu T, Zhao L. An Effective Interpolation Method for MODIS Land Surface Temperature on the Qinghai-Tibet Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015, 8(9): 4539-4550. DOI:10.1109/JSTARS.2015.2464094.
  50. Zhang L., Nan Z.*, Yu W. et al., 2015. Modeling Land-Use and Land-Cover change and hydrological responses under consistent climate change scenarios in the Heihe river basin, china. WATER RESOUR MANAG, 29(13): 4701-4717. DOI:10.1007/s11269-015-1085-9.
  51. 任彦润,赵彦博,南卓铜*. 2015, 联合科学数据中心的在线水文模型服务研究. 遥感技术与应用, 30(3): 547—556.
  52. He S., Nan Z*., Hou Y., 2015. Accuracy evaluation of two precipitation datasets over upper reach of Heihe River Basin, northwestern China. Sciences in Cold and Arid Regions, 7(2): 157-169.
  53. 曹艳萍, 南卓铜*, 程国栋, 2015. Grace重力卫星监测新疆干旱特征. 干旱区资源与环境, 29(08): 87-92.
  54. Chen H, Nan Z*, Zhao L, Ding Y, Chen J, Pang Q. Noah Modelling of the Permafrost Distribution and Characteristics in the West Kunlun Area, Qinghai-Tibet Plateau, China. Permafrost and Periglacial Processes. 2015, 26(2): 160-174. DOI:10.1002/ppp.1841.
  55. 何思为, 南卓铜*, 张凌, 余文君, 2015. 用VIC模型模拟黑河上游流域水分和能量的时空分布. 冰川冻土, 37(1): 211-225. (Link)
  56. Cao Y., Nan Z*., Cheng G., 2015. GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China. Remote Sensing, 7: 1021-1047.
  57. 史健宗, 南卓铜*, 赵林, 2014. 多年冻土元数据标准研究和应用. 遥感技术与应用, 29(5): 878-885
  58. Cao Y, Nan Z*, Hu X. 2014. An estimation of groundwater storage variations from GRACE gravity satellites in the Heihe River Basin, northwestern China. Sciences in Cold and Arid Regions, 6(6): 577-586.
  59. 吴立宗, 南卓铜, 王亮绪, 2014. 科学数据出版—促进数据共享的一种新模式. 中国科技资源导刊, (5): 72-78.
  60. Li W, Zhao L, Wu X, Wang S, Nan Z, Fang H, Shi W. Distribution of Soils and Landform Relationships in Permafrost Regions of the Western Qinghai-Xizang (Tibetan) Plateau, China. Soil Science. 2014, 179(7): 348-357. DOI:10.1097/SS.0000000000000075.
  61. 陈世杰,赵淑萍*,马巍,杜玉霞,邢莉莉. 利用CT扫描技术进行冻土研究的现状和展望. 冰川冻土. 2013(01): 193-200. (Link)
  62. Ge Y., Li X., Huang C., Nan Z.T., 2013. A Decision Support System for irrigation water allocation along the middle reaches of the Heihe River Basin, Northwest China. ENVIRON MODELL SOFTW, 47: 182-192.doi:10.1016/j.envsoft.2013.05.010.
  63. 张凌,南卓铜*,余文君. 基于模型耦合的土地利用变化和水文响应多情景分析. 地球信息科学学报. 2013, 15(6): 829—839.
  64. 余文君,南卓铜*,赵彦博,等. SWAT模型融雪模块的改进. 生态学报. 2013, 6992—7001.
  65. 候玉婷,南卓铜*,潘小多. WRF和GLDAS降水数据在黑河上游山区流域的比较与分析. 兰州大学学报(自然科学版). 2013, 49(4): 437—447.
  66. 赖正清,李硕,李呈罡,南卓铜,等. SWAT模型在黑河中上游流域的改进与应用. 自然资源学报. 2013, 28(2): 1404— 1413.
  67. 何思为,南卓铜*. 使用秩次集对方法预测地下水位动态变化. 四川大学学报(工程科学版). 2013, 45(S2): 55—60.
  68. 吴立宗,王亮绪,南卓铜,等. 科学数据出版现状及其体系框架. 遥感技术与应用. 2013, 28(3): 383—390.
  69. 吴立宗,王亮绪,南卓铜,等. DOI在数据引用中的应用:问题与建议. 遥感技术与应用. 2013, 28(3): 377—382.
  70. 王亮绪,吴立宗,南卓铜. 基于B2C架构的综合性科学数据共享系统. 遥感技术与应用. 2013, 28(3): 355—361.
  71. 赵彦博,南卓铜*,赵军. 一个新的支持多学科模型集成的流域决策支持系统框架研究. 遥感技术与应用. 2013, 28(3): 511—519.
  72. Chen H, Nan Z*. Wireless Sensor Network Applications in Cold Alpine Area of West China: Experiences and Challenges. International Journal on Smart Sensing and Intelligent Systems. 2013, 6(3): 932—952.
  73. 王亮绪,南卓铜,葛劲松,等. 青海湖流域生态环境科学数据平台. 遥感技术与应用. 2013, 28(1): 166—172.
  74. 黄培培,南卓铜*. 基于 Wavelet-ANFIS和 MODIS 地表温度产品的青藏高原0cm土温估算方法. 冰川冻土. 2013, 35(1): 74—83.
  75. 陈浩,南卓铜*,王书功,等. 黑河上游山区典型站点的水热过程模拟研究. 冰川冻土. 2013, 35(1): 126—137.
  76. Zhao Y, Nan Z*, Chen H, et al. Integrated hydrologic modeling in the typical inland Heihe river basin, Northwest China. Sciences in Cold and Arid Regions. 2013, 5(1): 35—50.
  77. 南卓铜,黄培培,赵林. 青藏高原西部区域多年冻土分布模拟及其下限估算. 地理学报. 2013, 68(3): 318—327.
  78. Zhang X, Nan Z*, Sheng Y, et al. Mountain permafrost distribution modeling using the Multivariate Adaptive Regression Spline (MARS) in the Wenquan area over the Qinghai-Tibet plateau. Science in Cold and Arid Regions. 2012, 4(5): 361—370.
  79. 曹艳萍,南卓铜*,胡兴林. 利用GRACE重力卫星数据反演黑河流域地下水变化. 冰川冻土. 2012, 34(3): 680—689.
  80. 何思为,南卓铜*,王书功,等. 四个概念性水文模型在黑河流域上游的应用与比较分析. 水文. 2012, 3(32): 13—19.
  81. 刘玉卿,徐中民,南卓铜. 基于SWAT模型和最小数据法的黑河流域上游生态补偿研究. 农业工程学报. 2012, 28(8): 124— (EI)
  82. 南卓铜,李述训,程国栋,等. 地面冻结数模型及其在青藏高原的应用. 冰川冻土. 2012, 34(1): 89—95.
  83. 余文君,南卓铜*,李硕,等. 黑河山区流域平均坡长的计算与径流模拟. 地球信息科学学报.2012, 14(1): 41—48.
  84. 张秀敏,盛煜,南卓铜,等. 基于决策树方法的青藏高原温泉区域高寒草地植被分类研究. 草业科学. 2011, 28(12): 2074—2083.
  85. 曹艳萍,南卓铜*. 利用GRACE重力卫星监测黑河流域水储量变化. 遥感技术与应用. 2011, 26(6): 719-727.
  86. 曹艳萍,南卓铜*. GRACE重力卫星数据的水文应用综述. 遥感技术与应用. 2011, 26(5): 543—
  87. 张秀敏,南卓铜*,盛煜,等. 基于多元自适应回归样条的青藏高原温泉区域的冻土分布制图. 冰川冻土. 2011, 33(5): 1088—1097.
  88. Nan Z*, Shu L, Zhao Y, et al. Integrated modeling environment and a preliminary application on the Heihe river basin. SCIENCE CHINA E: Technological Sciences. 2011, 54(8): 2145—2156. DOI:10.1007/s11431-011-4410-4.
  89. Wang S, Liang X, Nan Z. How much improvement can precipitation data fusion achieve based on the Multiscale Kalman Filter-Smoother framework?. Water Resources Research. 2011, 47(W00H12) DOI:10.1029/2010WR009953.
  90. 赵淑萍,南卓铜*,马巍. 一个用于冻土实验大数据文件处理的软件. 冰川冻土. 2011, 33(3): 582—588.
  91. 南卓铜,舒乐乐,赵彦博,等. 集成建模环境研究及其在黑河流域的初步应用. 中国科学 2011, 41(8): 1043—1054.
  92. 石伟,南卓铜*,李韧,等. 基于支持向量机的典型冻土区土壤分类研究. 土壤学报. 2011, 48(3): 461—469.
  93. 候玉婷,王书功,南卓铜*. 基于知识规则的黑河流域土地覆盖分类方法. 地理学报. 2011, 66(5): 549—561.
  94. 王之夏,南卓铜*,赵林. MODIS地表温度产品在青藏高原冻土模拟中的适用性评价. 冰川冻土. 2011, 33(1): 132—143.
  95. Li X, Nan Z, Cheng G, et al. Towards an Improved Data Stewardship and Service for Environmental and Ecological Science Data in West China. International Journal of Digital Earth. 2011. 4(4): 347—359. DOI:10.1080/17538947.2011.558123.
  96. 陈昊,南卓铜*,赵彦博. 基于知识推理的节水型城市评估系统. 冰川冻土,2010,32(4): 731-739.
  97. 南卓铜,李新,王亮绪 等. 中国西部环境与生态科学数据中心在线共享平台的设计与实现. 冰川冻土,2010,32(5): 970-975.
  98. 舒乐乐,南卓铜*. 基于类Twitter服务的低成本近实时野外监测数据更新系统. 冰川冻土,2010,32(5): 976-981.
  99. Nan Z.,Wang S.,Liang X. et al. Analysis of Spatial Similarities between NEXRAD and NLDAS Precipitation Data Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(3): 371-385.
  100. 陈昊,南卓铜*. 水文模型选择及其研究进展. 冰川冻土,2010,32(2): 397-404
  101. 朱仕杰,南卓铜*,陈昊,等. 基于Web Service的在线水文模型服务研究. 遥感技术与应用. 2010, 25(6): 853—859.
  102. 史健宗,南卓铜*,石伟 等. 青藏高原多年冻土本底调查信息系统. 遥感技术与应用,2010,25(5): 725-732.
  103. 王亮绪,吴立宗,南卓铜 等. 开源技术在地球科学数据中心中的应用. 中国科技资源导刊,2010,42(3): 17-23, 35.
  104. 李红星,王建,南卓铜 等. 西部数据中心的数据服务实践. 中国科技资源导刊,2010,42(3): 24-29.
  105. 潘小多,李新,南卓铜 等. 科学数据文档的研究. 中国科技资源导刊,2010,42(3): 30-35.
  106. 南卓铜,王亮绪,吴立宗 等. 科学数据中心的知识集成. 中国科技资源导刊,2010,42(5): 15-21, 36.
  107. 王亮绪,南卓铜,吴立宗 等. 西部数据中心数据集成和共享的回顾与展望. 中国科技资源导刊,2010,42(5): 30-36.
  108. Li X, Cheng G, Jin H, Kang E, Che T, Jin R, Wu L, Nan Z, Wang J, Shen Y. Cryospheric change in China. Global and Planetary Change. 2008, 62(3-4): 210-218. DOI:10.1016/j.gloplacha.2008.02.001.
  109. 李新,南卓铜,吴立宗 等. 中国西部环境与生态科学数据中心: 面向西部环境与生态科学的数据集成与共享. 地球科学进展,2008,23(6): 628-637.
  110. 冯克庭,南卓铜*,赵彦博 等. 基于插件的集成建模环境原型开发研究. 遥感技术与应用,2008,23(05): 587-591.
  111. 南卓铜,王亮绪,李新. EOS Data Dumper——EOS免费数据自动下载与重发布系统. 冰川冻土,2007,29(3): 463-469.
  112. 潘小多,刘勇,南卓铜. 基于DEM的祁连山——河西走廊地区地貌形态分形度量研究. 生态经济学报,2007,5(1-4): 118-125.
  113. 王惠林,南卓铜*,刘勇. CLIPS在黑河水文水资源决策支持系统中的集成研究. 遥感技术与应用,2006,21(4): 355-358.
  114. 朱仕杰,南卓铜*. 基于ArcEngine的GIS软件框架. 遥感技术与应用,2006,21(4): 385-390.
  115. Wu T.,Li S.,Cheng G, Nan ZT. Using Ground-Penetrating Radar to Detect Permafrost Degradation in The Northern Limit Of Permafrost On The Tibetan Plateau. Cold Reg Sci Technol,2005,41(3): 211-219.
  116. Nan Z.,Li S.,Cheng G. Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Science in China, Ser. D Earth Sciences,2005,48(6): 797-804.
  117. 南卓铜,李述训,程国栋. 未来50与100a青藏高原多年冻土变化情景预测. 中国科学, D辑,2004,34(6): 528-534.
  118. 南卓铜,高泽深,李述训 等. 近30年来青藏高原西大滩多年冻土变化. 地理学报,2003,58(6): 817-823.
  119. 南卓铜,李新,李述训. “青藏铁路数字路基与仿真平台”集成设计研究. 遥感信息,2003(1): 15-18.
  120. 南卓铜,李述训,刘永智. 基于年平均地温的青藏高原冻土分布制图及应用. 冰川冻土,2002,24(2): 142-148.
  121. 南卓铜,李述训,程国栋. 工程钻探信息系统的设计与实现. 地质与勘探,2002,38(4): 78-82.
  122. 南卓铜,李新,李述训. “青藏铁路数字路基与仿真平台”体系架构设计. 冰川冻土,2002,24(5): 646-651.
  123. 李述训,南卓铜,赵林. 冻融作用对地气系统能量交换的影响分析. 冰川冻土,2002,24(5): 508-511.
  124. 李述训,南卓铜,赵林. 冻融作用对系统与环境间能量交换的影响. 冰川冻土,2002,24(2): 109-115.

会议论文

  1. Wu X, Nan Z.A multilayer soil texture dataset for permafrost modeling over Qinghai-Tibetan Plateau.In Proceeding of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2016. 4917-4920.
  2. Wang Y, Nan Z*, Chen H, Wu X.Correction of daily precipitation data of ITPCAS dataset over the Qinghai-Tibetan Plateau with KNN model.In Proceeding of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2016. 593-596.
  3. Ning C, Wang Y, Nan Z*, Chen H, Liu C.Study on correction of daily precipitation data of the Qinghai-Tibetan plateau with machine learning models.In Proceeding of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),2016. 517-520.
  4. Yu W, Wu T, Nan Z*, et al. A novel interpolation method for MODIS land surface temperature data on the Tibetan Plateau. Proc. SPIE 9260, Land Surface Remote Sensing II, 92600Y. 2014. doi:10.1117/12.2068892.
  5. Cao Y, Nan Z*. Detecting terrestrial water storage variations in northwest China by GRACE.Proc. SPIE 9260, Land Surface Remote Sensing II, 92601H.2014. doi:10.1117/12.2067856.
  6. Chen H., Nan Z.*, Verification of a ground meteorological forcing dataset and its application on permafrost region of Qinghai-Tibetan Plateau. In:Proceedings of IGARSS 2013. Melbourne, Australia. 3610-3613.
  7. Hou Y, Nan Z*.Comparisons of WRF and GLDAS precipitation products in the Heihe river basin. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, 2012. 1321—1324.
  8. Cao Y, Nan Z*, Hu X.ESTIMATING GROUNDWATER STORAGE CHANGES IN THE HEIHE RIVER BASIN USING GRACE. In Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International,2012. 798—801.
  9. 李新,冉有华,南卓铜,等.一个融合了我国现有冻土图和模型模拟结果的中国冻土分布图//寒旱区工程与环境研究——程国栋院士七十华诞学术研讨会文集.兰州:兰州大学出版社,2012:229—239.
  10. 黄培培,南卓铜*,赵林.利用扩展的地面冻结数模型模拟青藏高原冻土分布//寒旱区工程与环境研究——程国栋院士七十华诞学术研讨会文集.兰州:兰州大学出版社,2012:240—252.
  11. Zhang X, Nan Z*, Sheng Y, et al. A new method of vegetation classification based on vegetation index data’s distribution. In Proceedings of the International Conference on Remote Sensing, Environment and Transportation Engineering 2011. IEEE,2011. 13—16.
  12. Zhang X.,Nan Z.*,Sheng Y. et al. Analysis of time-series MODIS 250m vegetation index data for vegetation classification in the Wenquan area over the Qinghai-Tibet plateau,IGRASS 2010: 2059-2062.
  13. Chao Z.,Nan Z.,Li X. et al. Comparison of the extracted DEMs in Heihe River Upper and Middle Reaches,SPIE, 2006,6411: 64111B.
  14. Nan Z.,Li X.,Wang S. Development of a scenario-driven spatial decision support system for the Heihe River Basin. In: Proceedings of the International Symposium on Sustainable Water Resources Management and Oasis-hydrosphere-desert Interaction in Arid Regions. Beijing: Tsinghua University Press,2005: 421-422.(Extended Abstract)

专著/编著/章节

  1. 南卓铜,赵彦博,周剑,李新. 集成建模环境 (第2章). 黑河流域模型集成, 程国栋,李新, 北京: 科学出版社, 2019, 31-44.
  2. 赵林,盛煜,南卓铜,吴通华, 周国英. 多年冻土调查手册. 北京: 科学出版社, 2015. p.198. 第8、9章主笔。
  3. Li X., Z. Nan, L. Wu, R. Jin, T. Che, Y. Ran, and L. Dai, “Data bases of the Cryosphere in China,” in CNC-CliC/IACS Annual Report 2013 Beijing: China Meteorological Press, 2013, pp. 291-306. 第16章主笔。
  4. 丁永建,周成虎,邵明安,等. 地表过程研究概论. 北京: 科学出版社, 2013: p.484. 南卓铜参与撰写第1、17章,9860字。
  5. 丁永建,韩添丁,夏军,等编. 第九届中国水论坛论文集: 水与区域可持续发展. 北京: 中国水利水电出版社, 2012: p.590. 南卓铜编委会成员。

教学论文

  1. 南卓铜,张宏,潘雪莹,高红侠,赵淑萍. “GIS算法基础”课程教学研究. 高等理科教育. 2019(3): 114-120. (Link1)

其它

  1. 李新,丁永建,南卓铜. “中国西部环境与生态科学数据中心”专栏(总论). 遥感技术与应用. 2013, 28(3): 353-354.
  2. 南卓铜,潘小多,李新. 干旱区水与发展信息全球网络——国际干旱半干旱区地下水建模培训研讨会暨亚洲区域会议. 地球科学进展,2007(12).

(*为通讯作者; Last Updated on March 15, 2024)